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Eikonal cross sections from a time-dependent view? 
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Abstract. Differential cross sections are written in terms of a time autocorrelation function 
involving Lhe transition operator. Such a formulation is useful when time-dependent 
approximations are considered. Eikonal theory provides a good example. Using the time 
autocorrelation function representation, a general eikonal differential ccoss section is 
obtained which is parametrised by a momentum. If this parameter is taken as the incoming 
momentum, then the resulting eikonal differential cross section is found to be complemen- 
tary to the standard Glauber total cross section, that is, the angular average of the 
differential cross section is identical to the total cross section. Weak potential limits of these 
cross sections are Mott cross sections. On the other hand, if the parameter is taken as the 
average of the incoming and outgoing momenta, then an eikonal differential cross section is 
produced whose complementary total cross section is not of Glauber form. However, the 
weak potential limits of these cross sections are the Born cross sections. 

1. Introduction 

In the description of binary quantal scattering events, an often used approximation is 
eikonal theory (see, for example, Glauber 1959, Schiff 1968, Joachain and Quigg 1974, 
Newton 1966, Bransden 1970). The eikonal wavefunction is usually obtained either as 
a path integral approximation to the phase (Schiff 1968), or as a high-energy approxi- 
mation to the free Green function (Joachain and Quigg 1974). Differential and total 
cross sections are then obtained by reducing the eikonal wavefunction to the Glauber 
wavefunction (Glauber 1959). However, the Glauber differential and Glauber total 
cross sections are not complementary, that is, the angular average of the Glauber 
differential cross section is not identical to the Glauber total cross section. Comple- 
mentarity is only obtained when further approximations are made to this angular 
average (see, for example, Glauber 1959). 

The purpose of this paper is to remedy this situation, that is, to obtain an eikonal 
differential cross section that is the complement of the Glauber total cross section 
without recourse to further approximations. To do so, a class of eikonal differential 
cross sections is obtained. It is then interesting to consider the weak potential limits of 
these cross sections, since the weak potential limit of the eikonal wavefunction is the 
Born wavefunction. It is found that the Glauber total cross section and its eikonal 
differential complement reduce to Mott (1931) cross sections and not to Born cross 
sections. 
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To obtain this class of eikonal differential cross sections, it is convenient to use a time 
autocorrelation expression for the exact differential cross section as a starting point, 
rather than the standard static form (square of a matrix element of the transition 
operator). Such an expression is obtained in § 2. The derivation of this time autocor- 
relation form is based upon the generalised cross section description of the scattering 
event given by Snider (1975) and Coombe et al (1975). 

Having a time autocorrelation function involving the transition operator then 
requires an eikonal transition operator to be defined for the expression to be of use. In 
§ 3 an eikonal transition operator is defined using the eikonal Mdller operator obtained 
by Turner (1980). This eikonal Mdller operator is parametrised by a momentum which 
may be varied. Thus the class of eikonal differential cross sections which are obtained 
from using this eikonal transition operator in the autocorrelation function is determined 
by the momentum parameter. In 8 4 this momentum is taken to be the initial 
momentum. The eikonal differential cross section thus defined is complementary to the 
standard Glauber total cross section. In the weak potential limit it reduces to the 
complement of the Mott (1931) total cross section, thus defining a differential Mott 
cross section. Finally, in 8 5 ,  the momentum parameter is taken as the average of the 
incoming and outgoing momenta. The total cross section complementary to this 
eikonal differential cross section does not have the simple Glauber form. However, 
their weak potential limits are the complementary Born cross sections. 

2. Differential cross section as a time correlation function 

To obtain a time correlation expression for the differential cross section, it is convenient 
to start with the generalised cross section (Snider 1975, Coombe et a1 1975) 

Here, lp“&$3/p”)(p”l is a plane wave density which is transformed into a spherical 
density IR)(R I by the transition superoperator 

r= VClL. 

The reduced mass is p, the incoming momentum isp” and the observation direction is 8. 
Involved in the expression for the transition superoperator are the potential super- 
operator V, K’ times the commutator with the potential energy V, and the Mdller 
superoperator, 

(2.3) CIL = 1-- lim exp(i9t) exp(-iXt) , 

This Mhller superoperator contains the full Liouville or von Neumann superoperator 2 
(A-’ times the commutator with the Hamiltonian H = K + V) and the drift or kinetic 
superoperator YE (h-’ times the commutator with the kinetic energy K ) .  

The expression for the generalised cross section can be related to the transition 
operator forms of the differential and total cross sections. Indeed, it is just such a 
relation that produces the time correlation expression for the differential cross section. 
To obtain the transition operator forms, use is made of the relation (Jauch et al 1968, 
Turner 1977) 
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between the Mdller superoperator and the Mdller operator 

a‘+’ = t+-w lim exp(iHt/h) exp(-iKt/h). (2.5) 

Here p i,s an operator. In particular, using equation (2.4) in equation (2.1) leads to the 
expression 

@ g e n ( p ” +  R )  = - ( 4 r h 2 p / p ” )  Im dpp2(pR Ii2(+)IP”)(P”ltiP Ips), (2.6) 

for the generalised cross section that contains the Mdller operator and the adjoint of the 
transition operator, 

top = VR‘”. (2.7) 
Differential and total cross sections can be obtained from equation (2.6) when the 

Lippmann-Schwinger equation, 

is used. Here the time-dependent transition operator is 

top(s) = exp(iXs)top = exp(iKs/h)top exp(-iKs/h). (2.9) 

Equation (2.8) is the time integral form (see, for example, Turner 1980) of the usual 
energy-dependent Lippmann-Schwinger equation relating the Mdller operator and the 
transition operator. Using equation (2.8) in equation (2.6) gives the relation (Snider 
1975, Coombe et al 1975) 

(Tgen(p”+ R )  = r ( p ) )  + R )  - crtot(p”)S(2)(R - p ” )  

r ( p ”  + R ) = (2 rhp  ) 2 1 (  p r f R  I top/ pS)I2 , 

(2.10) 

between the generalised cross section, the differential cross section, 

(2.11) 

and the total cross section 

vtot(p”) = -(4,rrh2p/p”) Im(p”~top~p”) = I d $ r ( p ” + k ) .  (2.12) 

Equations (2.11) and (2.12) are the standard transition operator expressions for the 
differential and total cross sections (see, for example, Newton 1966). 

Equation (2.1 1) was obtained by explicitly evaluating the time integral which 
resulted upon use of equation (2.8) in equation (2.6). However, if this time integral is 
not explicitly performed, then the time correlation expression 

a(p”+d) = (8,rr2hp/p”) jOw dpp21m i d s ( p R ( t , , ( s ) ( p ” ) ( p “ ( t ~ , I p f f )  (2.13) 

for the differential cross section is obtained. It involves an autocorrelation function in 
the transition operator with time dynamics generated by the kinetic or drift super- 
operator X, see equation (2.9). The advantage of this expression for differential cross 
sections over the standard formula, equation (2.1 l), occurs when time-dependent 
approximations to the transition operator are considered. A particularly good example 
of the advantage of the time correlation expression is eikonal theory. 

0 
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3. General eikonal cross section 

To obtain a general eikonal differential cross section from the time correlation 
expression, it is necessary to evaluate eikonal approximations to the transition operator 
at time zero and time s. This requires an eikonal Mdller operator. Turner (1980) has 
recently presented a derivation of the eikonal Mdller operator based upon the inter- 
action picture representation. In particular, the M l l e r  operator, equation (2.5), 
becomes 

ds VK(s)) E O‘”(0) (3.1) 

in the interaction picture. The zero in O‘”(0) refers to the upper limit of integration, 
while T is the Dyson (1949) chronological operator. This representation of the Mdller 
operator involves the interaction picture potential, 

VK (s) = exp(i7Cs) V, (3.2) 

which can be exactly written as 

( 3 . 3 )  

The eikonal potential, 

and the eikonal Mprller operator, 

are obtained when the trajectory $(x + z )  +ps/p is replaced by the trajectory $(x + z )  + 
Ps /p .  This latter trajectory contains a given but non-unique momentum P. In the next 
two sections two particular choices for this momentum are discussed. However, for the 
present, this momentum is not specified. 

Making use of equations (2.7) and ( 3 3 ,  the eikonal transition operator at time zero 
becomes 

t,p(OIP)EA = VR‘+’(OIP)EA. (3 .6)  

Since this operator is diagonal in position space, its exact time-dependent motion is 

exp(i7ts) tOp(o I P ) ~ *  

= h-3 dx dz dp exp[-ip . (x - z ) /h ] l z )  V[$(x + z )  + p s / p ]  I 
ds’ V[$(x + z )  +ps/p  + Ps’/pI)(xI .  (3.7) 

As with the Mdller operator, this time-dependent transition operator can be diagonal- 
ised in the position representation by again replacing the trajectory t(x + z )  +ps/p with 
the trajectory $(x + z )  + P s / p .  Making this replacement defines the time-dependent 
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eikonal transition operator, 

to,(slP)EA = V(rop+PS/p))S1(+)(s~P)EA, 

which is consistent with the time-dependent eikonal Mdller operator. 
The general eikonal differential cross section, 

0 

~ ( p ‘ l + l ? I P ) ~ * =  (8?r2hp/p”)  Ioa dpp21m i ds(pff~top(sIP)EAIp”) 
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(3.8) 

x ( p ”  tOP(O P)EAt p i ) ,  (3.9) 

is obtained when the eikonal transition operator, equation (3.8), is used in the time 
correlation expression for the differential cross section, equation (2.13). This equation 
is termed the general eikonal differential cross section since it contains an as yet 
unspecified momentum P. Different results will arise upon different choices for this 
momentum. Two such choices will now be considered. One choice is the forward 
direction p ”  which is the standard choice for eikonal approximations (see, for example, 
Schiff 1968) while the other choice is the average momentum $ (p i+p’ ’ )  (see, for 
example, Newton 1966). 

4. Initial momentum situation 

Here the momentum P is taken as the initial momentum p ”  of the projectile. Thus the 
eikonal differential cross section, equation (3.9), becomes 

(4.1) I I  EAt X(P”l~OP(0lP ) Ip&. 

This eikonal differential cross section is consistent with the standard definition of the 
Glauber (1959) total cross section, that is, the angular integral of this eikonal cross 
section is equal to the Glauber total cross sectio?. This result is easily demonstrated by 
performing the angular integral, that is ( p  = p R )  

I dff(+(p”-,iIp’~)EA=(S?rzhp/p’’)Imi dp(p”ltop(Olp 11 ) EAt Ip)  

x(P l to , (~ I~3EAI~1’ )  

I I  EAt = (8?r2hp/p”)Im i ds(p”ltop(Olp ) top(~)pn)EA/pl’) 

= (8?r2p/h2p”)Im i d rV( r )V( r+p”s /p )  

xexp( (--i/h) Ios ds’V(r + p ” s ’ / p ) )  . (4.2) 

Now, taking the imaginary part and performing the time integral gives 

I d ic r (p l ’+dIp r ’ )EA= (477plhp”) I d r  V(r) sin ds’V(r+p’’s’/p)).  (4.3) 
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Finally, writing the position r in cylindrical coordinates, i.e. r = b + z$”, b .  3’’ = 0, this 
total cross section becomes 

X sin ( p / h p “ )  dz’V(b + zfp*”)) ( I-: 
GL = -2 d”’b[cos ~ ( b )  - 11 Utot , J 

where x(b)  is the standard Glauber (1959) phase, 

x(b)  = ( p / h p ” )  J dz V(b + zp*”). 
-m 

(4.4) 

(4.5) 

Equation (4.4) is the standard Glauber total cross section. Thus, the eikonal 
differential cross section defined by equation (4.1) is the differential cross section that 
should be associated with the total Glauber cross section. It is not equal to the Glauber 
(1959) differential cross section. In fact, the Glauber differential cross section is an 
approximation to equation (4.1). In particular, if the time integral of the eikonal 
transition operator is taken to be its initial (s = 0) value, if the final momentum p is taken 
as p ”  and if the momentum transfer, p ” - p ” R ,  is assumed to have no component in the 
incoming direction, then the Glauber (1959) differential cross section 

~ ( p l ’ + R ) ~ ~ =  (p”/h)21  [ d‘2’b[exp(-iX(b))- 11 exp[i(p”-p”R). b/h]l  (4.6) 

is obtained. On the other hand, this Glauber cross section can be obtained from the 
standard transition operator expression for the differential cross section, equation 
(2.1 l), by replacing the transition operator with the initial eikonal transition operator, 
equation (3.6), and by assuming that the momentum transfer has no component in the 
initial direction. To obtain the total Glauber cross section from the Glauber differential 
cross section requires a further approximation; see, for example, Glauber (1959). 

It is of interest to consider the weak potential limit of this eikonal differential cross 
section and its complement, the total Glauber cross section. In particular, the Glauber 
total cross section reduces to the Mott (1931) total cross section, that is, 

a:: = - 2  I d‘2’C[cosx(b)-l]-[ d‘2’bx(b)2 

2 

00 2 - I d“’b( ( p / h p ” )  dz V(b + zp*”)I = 
-m 

(4.7) 

where the last form is recognised as the Mott result. Since the Glauber total cross 
section reduces to the Mott total cross section, the eikonal differential cross section 
should reduce to a differential cross section which is the complement of Mott’s result. 
Indeed this is what happens for the weak potential limit of equation (4.1), namely, 

W 0 

4 p” + ff I P”)~* - (8.rr2hp/p”) jo dp p 2  [-, ds( p i  1 WOp + p”s/p )I p”X p”l VI PR ) 
E a ( p +, R ) M O t t  (4.8) 
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(where the time integral of the matrix elements is real) is the complement of the total 
Mott cross section. It is thus termed the Mott differential cross section. As with the 
eikonal differential cross section, straightforward angular integration of equation (4.8) 
reproduces equation (4.7), thus demonstrating the complementary nature of these two 
cross sections. 

By choosing the momentum P to be the incoming momentum p ” ,  the resulting 
eikonal differential cross section, equation (4.1), is found to be the complement of the 
usual Glauber total cross section. When the potential is assumed to be weak, the 
complementary Mott cross sections were obtained rather than the complementary Born 
approximations. The question then arises as to what choice for P will lead to the Born 
approximations in the weak potential limit. As demonstrated in the next section, the 
choice is the average momentum $(PI? + p ” ) .  

5. Average momentum situation 

When, P is chosen as the average of the incoming and outgoing momenta, the eikonal 
differential cross section becomes 

a[ p “  -* 2 I$( p R  +p”)]”^ 
00 0 

= (87rZhp/p”) I dpp21m i I ds(pfflt,,[sl$(pI? +p”)lEAlp”) 
0 -m 

x ( p ”  to,[0 $(PI? +p”)lEA+ p R ) ,  (5.1) 

a form which differs from equation (4.1) only in the choice of P. However, this is a 
crucial difference. For example, the total cross section, 

atot= dI? ( + [ p ” + & l $ ( p @  +p”)lEA, t5.2) I 
complementary to equation (5.1) does not take on the simple Glauber form, as the 
resulting p (  =PI?) integration is far from trivial. Furthermore, the weak potential limits 
of these cross sections are the complementary Born cross sections and not the Mott 
cross sections. In particular, equation (5.1) becomes 

(+[p”-*Rl$(pk + p ” ) ] E A - ( 8 ~ 2 h p / p ’ f )  dppZj -_  ds 
00 0 

(5.3) 

in the weak potential limit. To obtain equation (5.3), the time integral of the matrix 
elements has been recognised as being real. Equation (5.3) is the time correlation form 
of the Born differential cross section (see, for example, Turner and Snider 1976). It is 
interesting to note that the only difference between the Mott and Born differential cross 
sections is the direction of the straight line trajectory. In the Mott case the trajectory is 
such that the particle goes straight through, i.e. no deflection, while in the Born case it 
follows a straight path directed along the average of the incoming and outgoing 
momenta, i.e. some deflection. 
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6. Discussion 

Differential cross sections have been expressed in terms of a time autocorrelation 
function of the transition operator. The advantage of such a formulation over the usual 
static representation lies in its applicability to time-dependent approximations. This 
has been exemplified by the use of eikonal theory. In the time correlation function 
representation a general eikonal differential cross section, equation (3.9), is obtained 
which is parametrised by an adjustable momentum P. 

When this momentum is taken to be the initial momentum p ” ,  then the said eikonal 
differential cross section is found to be the complement of the standard Glauber total 
cross section. By complement it is meant that the angular average of the differential 
cross section is identical to the total cross section. The weak potential limits of these 
cross sections are equal to the complementary Mott cross sections. On the other hand, 
if the momentum P is taken to be the average of the incoming and outgoing momenta, 
then an eikonal differential approximation is obtained whose complementary total 
cross section does not have the usual Glauber form. However, the cross sections 
defined with this momentum reduce to the complementary Born approximations in the 
weak potential limit. 
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